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Abstract—This letter is focused on the classic problem of testing
samples drawn from independent Bernoulli probability mass
functions, when the success probability under the alternative
hypothesis is not known. The goal is to provide a systematic
taxonomy of the viable detectors (designed according to theoreti-
cally-founded criteria) which can be used for the specific instance
of the problem. Both One-Sided (OS) and Two-Sided (TS) tests
are considered, with reference to: ( ) identical success probability
(a homogeneous scenario) or ( ) different success probabilities (a
non-homogeneous scenario) for the observed samples. As a result
of the study, a complete summary (in tabular form) of the relevant
statistics for the problem is provided, along with a discussion on
the existence of the Uniformly Most Powerful (UMP) test. Finally,
when the Likelihood Ratio Test (LRT) is not UMP, existence of the
UMP detector after reduction by invariance is investigated.

Index Terms—Binary integration, composite hypothesis testing,
decision fusion, invariant detection.

MANUSCRIPT NOTATION

Lower-case bold letters denote vectors, with being the th
element of ; upper-case calligraphic letters, e.g. , denote fi-
nite sets; and denote expectation and transpose, re-
spectively; denotes a diagonal matrix
with elements on the main diagonal; denotes probability
mass functions (pmf), while is the corresponding condi-
tional counterparts; denotes a Bernoulli pmf with success
probability ; denotes the Heaviside unit-step function; fi-
nally the symbol means “distributed as” and “ ” is used to
underline statistical equivalence between decision statistics.
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I. PROBLEM FORMULATION

H YPOTHESIS testing from Bernoulli samples is of ex-
treme importance for signal processing. Relevant appli-

cations range from radar detection (for binary integration [1],
[2]) to sensor fusion [3], [4], from reliability theory [5] to pat-
tern identification [6].
More specifically, the problem can be formulated as a bi-

nary hypothesis test, where observations1 (collected in
the vector ) are used to discriminate between the null ( )
and the alternative ( ) hypotheses. The th observation,

, is characterized by the conditional
probabilities . For notational convenience we denote

and
the success probabilities under and , respectively,

and we also assume conditionally independent observations, i.e.
.

As for , they can be either known or unknown, whereas
are unknown and deterministic parameters. The reason is

that the alternative hypothesis commonly models events
such as the target presence in radar detection or the occurring
of a specific phenomenon in Sensor Networks (SNs); hence
the mentioned probabilities usually depend on some unknown
model parameters [2], [4], [8], [9].
The measurement model is entirely specified via the joint

multivariate probability mass function (pmf) under the generic
hypothesis , denoted as . In many rele-
vant cases, and have the meaning of detection and
false alarm probabilities, thus it can be safely assumed that

, since each meaningful detector has performance
above the so-called “chance line” [2], [10]. On the other hand,
in contexts such as that of [9], [11], is the result of a one-bit
(dumb) quantization of a raw measurement under . More
specifically, in the latter case the model

holds for , where , , and are an observation
coefficient, a real-valued unknown parameter, a noise term with
zero-mean and unimodal probability density function and a suit-
able threshold, respectively. Then, it is of interest considering
both One-Sided (OS) and Two-Sided (TS) testing [10]. Sum-
marizing, the considered problems are:

(1)

(2)

which will be studied with reference to the following two sce-
narios: ( ) homogeneous with , ;

1In this letter wewill adopt the generic term “observation”. Indeed, depending
on the specific context, this may have different meanings. For example, it could
represent the binary decision of a sensor in decentralized detection [7]. Alterna-
tively, this may be related to the non-coherent decision output of a single pulse
within a train of pulses in radar detection via binary integration [2].
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( ) non-homogeneous with arbitrary , (as a
byproduct we will also analyze the partially-homogeneous sce-
nario, that is , ).
The aim of this letter is to provide a detailed overview of the

possible alternatives which can be tackled for the composite hy-
pothesis testing specified in Eqs. (1) and (2), especially when the
optimum Log-Likelihood Ratio (LLR) cannot be implemented.
More specifically, we first investigate the existence of the Uni-
formly Most Powerful (UMP) test pointing out that it does not
exist, with a few exceptions. Consequently, we derive the Gen-
eralized Likelihood Ratio Test (GLRT), the Rao Test, the Wald
Test and the Locally Most (Mean) Powerful Test (LM(M)PT) as
viable decision strategies (also investigating and discussing pos-
sible coincidence and/or statistical equivalence). Furthermore,
we also focus on the existence of a UMP Invariant (UMPI) test
under the group of transformation composed of the permuta-
tions of the samples.
Remarkably, invariance arguments lead to some optimality

claims for the well-known Counting Rule (CR) [2], [7], which
for OS testing turns out to be the UMPI detector2. This repre-
sents a solid justification for its application when only very lim-
ited knowledge about the hypothesis testing problem is avail-
able. Finally, we provide a systematic taxonomy for the consid-
ered detectors in all the investigated scenarios.
The remainder of this letter is organized as follows: in

Section II we derive and discuss the main results, while in
Section III we draw some concluding remarks.

II. TAXONOMY OF DECISION RULES

A. LLR and UMP test

We start from the analysis of the simple homogeneous sce-
nario. According to Neyman-Pearson criterion, the LLR is de-
rived easily as [10]:

(3)

and can be shown to be statistically equivalent to:

(4)

Eq. (4) evidently depends on the unknown parameter .
Nonetheless, a careful inspection reveals that in OS testing (cf.
Eq. (1)) the condition automatically implies positivity
of log term in Eq. (4). Therefore, the CR [3], [4] is UMP in OS
testing, as a consequence of Karlin-Rubin theorem [12]. On the
other hand, it is easily understood that the UMP test does not
exist when testing a TS alternative.
Similarly, in the non-homogeneous case, the LLR is obtained

as follows:

(5)

2In this specific case, if a partially-homogeneous scenario is considered, sta-
tistical equivalence among the UMPI, GLR, Rao (under a mild condition) and
LMMP detectors also arises.

Such a rule is very common in statistical literature and, in de-
cision fusion applications, it is commonly referred to as the
Chair-Varshney rule [7]. Clearly, the LLR cannot be evaluated
when the ’s are unknown. Also, it is apparent that for both
TS and OS testing the UMP test does not exist. For such a
reason, evaluation and comparison of viable decision rules is
relevant and will be the object of the remainder of the manu-
script.

B. GLRT

The GLRT is widely used to devise decision rules in com-
posite hypothesis testing [10]. In the present setup the GLR for
the homogeneous case is given by

(6)

and assumes the explicit expression:

(7)

where denotes the Kullback-Leibler (KL) divergence

[13] and . The well-known test proposed by Ho-
effding in [14] arises in TS testing, i.e. a threshold test based
on the sample KL divergence between the Bernoulli pmfs in the
two hypotheses. Similarly, in OS testing a restricted version for

is obtained.
Differently, in the non-homogeneous scenario, GLR requires

the following parameter-vector maximization:

(8)

where we have denoted and
, respectively. It is not difficult to

show that th element of the ML estimate (under ) is:

(9)

Substituting Eq. (9) into (8) leads to , where3

(10)

Finally, it is worth noticing that in the partially-homogeneous
scenario ( ), the GLR coincides with the CR in OS
testing, while the (very mild) condition is needed in TS
testing.

C. Rao Test

In the homogeneous case, the Rao (score) test is evaluated as
[9], [15]:

(11)

(12)

3We have exploited statistical equivalence in order to neglect the irrelevant
term in TS testing.
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(13)

where is the Fisher informa-
tion and denotes the Total Variation Distance (TVD).
We notice that statistical equivalence of Eq. (12) to the CR
cannot be claimed since

(14)

Similarly, the Rao test in the non-homogeneous case is evalu-
ated as:

(15)

(16)

Finally, with reference to the partially-homogeneous scenario
( ), we observe from Eq. (16) that is statistically
equivalent to the CR in TS testing if (cf. Eq. (16)), since

(17)

D. Locally Most (Mean) Powerful Test (LM(M)PT)

Since we are also considering OS testing, a LMPT seems ap-
propriate in this context. Indeed, for homogeneous scenario and
OS testing, the LMPT is obtained as [10]

(18)

(19)

where last expression underlines statistical equivalence (inde-
pendently on the value of ) to the CR.
On the other hand, in the non-homogeneous scenario, it can

be shown that a LMPT cannot be obtained [10]. Indeed, the
first-order Taylor series of the LLR depends on the (unknown)
differences , which weight the gradient (score)
vector. Therefore, to overcome this issue, we resort to a modi-
fied multi-dimensional version of the LMPT, which maximizes
the mean curvature of the power function in the neighborhood
of , that is [16], [17]

(20)

Statistic in Eq. (20) is usually referred4 to be LocallyMostMean
Powerful (LMMP). Finally, with reference to the partially-ho-
mogeneous scenario , we observe that similar con-

4With a slight abuse of notation we will use the symbol to denote both
LMPT and LMMPT, depending on the specific scenario.

siderations as in the homogeneous case apply, that is, is sta-
tistically equivalent to the CR for OS testing (cf. Eq. (20)).

E. Wald Test

The well-known Wald Test in the homogeneous case is [15]

(21)

where is defined as:

(22)

On the other hand, we remark that in a non-homogeneous situ-
ation the Wald test cannot be constructed. Indeed, in the latter
case the general expression is:

(23)

where has its elements defined in Eq. (9). Unfortu-
nately, the th component of the Fisher matrix

diverges when the corre-
sponding component of the ML estimate equals 0 or 1 in a
TS testing (1 in a OS testing, respectively), thus making the
statistic in Eq. (23) not applicable.

F. Reduction by Invariance and Existence of the UMPI Test

As already pointed out, the problem at hand admits a UMP
test only in very special cases. Therefore it is convenient
pursuing alternative approaches. To this end, we resort to
the theory of invariance, which allows focusing on decision
rules exhibiting some natural symmetries implying important
practical properties [18]. Besides, the use of invariance leads
to a data reduction because all invariant tests can be expressed
in terms of statistics, called the Maximal Invariant Statis-
tics (MIS), denoted hereinafter with , which organizes
the original data into equivalence classes. Mathematically
speaking, given the group of transformations , a MIS has the
following properties: ( ) for all ; ( ) if

, then for some .
First, as a meaningful choice of the invariance group, we

choose to devise tests which are independent on the associ-
ation between the sample and the corresponding couple

, that is, we define as the set of permutations of
the vector . Then, it is not difficult to show that for the con-
sidered problem (in both homogeneous and non-homogeneous
scenarios) the MIS is scalar and coincides with the CR. This
property holds since , for each vector containing
bits set to 1. Also, it can be always found a permutation

transforming into , if (i.e. a simple
bit “shuffling”).
Once we have proved that the CR is the MIS, we can build

the Most Powerful Invariant (MPI) test, based on the decision
statistic

(24)

where , which is clearly the LLR
of the MIS. It is not difficult to show that in the simple ho-
mogeneous scenario is a Binomial pmf, while in the
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TABLE I
TABLE FOR DETECTORS COMPARISON: (H) HOMOGENEOUS SCENARIO ; (NH) NON-HOMOGENEOUS SCENARIO ( ; (PH)

PARTIALLY-HOMOGENEOUS SCENARIO . ( ) IF

non-homogeneous case generalizes to a Poisson-Bi-
nomial pmf [19], [20], [21], whose expression is given by5

(25)
Thus, assuming , the MPI is evaluated as:

(26)

Clearly, Eq. (26) cannot be implemented since ’s are not
known. However, we can check for existence of UMPI test. To
proceed further, we distinguish between the two situations:
• (OS testing): The UMPI test does exist. Indeed, it can be
shown, under the assumption (the proof is
given in [22, Thm. 2]), that theMPI decision statistic
in Eq. (24) is an increasing function of . Then, by
invoking Karlin-Rubin theorem, we can state that theCR is
the UMPI test. The latter statement clearly holds for both
homogeneous and non-homogeneous scenarios.

• (TS testing): the UMPI test does not exist. In fact, even in
the simpler homogeneous scenario is:

(27)

This implies that the MPI decision statistic is not always in-
creasing with the MIS (namely the CR), since this depends

5It is worth noticing that Eq. (25) requires sums which are infeasible to com-
pute in practice unless is small. For this reason different methods have been
proposed in literature for its efficient evaluation. The alternatives include fast
convolution of individual Bernoulli pmfs [19], recursive approaches [20] and a
Discrete Fourier Transform based computation [21].

on whether . Similar reasoning can be used to prove
analogous statement in a non-homogeneous scenario.

G. Detectors Discussion

A complete summary of the viable decision statistics is re-
ported in Table I. It is apparent that in OS testing (which is rel-
evant for radar and decision fusion applications), CR should be
used in a homogeneous scenario, since it is the UMP test. Differ-
ently, in non-homogeneous and partially-homogeneous cases,
GLRT can be employed as a suitable test. Alternatively, Rao,
Wald (in the homogeneous case) and L(M)MPT tests can be
used; their relative performance will of course depend from
case to case. However, CR has been shown to be: ( ) UMPI in
all the aforementioned scenarios; ( ) statistically equivalent to
GLRT and Rao test (under the mild condition ) in a par-
tially-homogeneous scenario and ( ) statistically equivalent to
L(M)MPT in a (partially) homogeneous scenario. Such results
confirm its robustness observed in the open literature mainly via
simulations.
On the other hand, for TS testing we have shown that nei-

ther the UMP nor the UMPI tests exist. As for the latter, the
GLRT can be used, as well as Rao and Wald (in a homogeneous
scenario) tests; same considerations as in OS testing apply on
their performance. Finally, CR has been shown to be statisti-
cally equivalent to both GLRT and Rao test in a partially-ho-
mogeneous scenario (under the mild condition ).

III. CONCLUSIONS

In this letter we provided an overview of the classic problem
of testing samples drawn from independent homogeneous
(non-homogeneous) Bernoulli pmfs, when the success proba-
bility (probabilities) under the alternative hypothesis is (are) not
known. Both OS and TS testing were considered in our anal-
ysis. Existence of the UMP test was investigated and confirmed
only in OS testing with a homogeneous scenario. Therefore,
GLRT, Rao test, Wald test and and LM(M)PT were derived
and their possible coincidence and/or statistical equivalences to
the well-known CR underlined. Moreover, the existence of the
UMPI test was investigated under the group of transformations
represented by the samples permutations. With reference to the
invariance domain, it was shown that in OS testing the UMPI
test is the CR itself.
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